Putting Wings on SPHINCS

نویسنده

  • Stefan Kölbl
چکیده

SPHINCS is a recently proposed stateless hash-based signature scheme and promising candidate for a post-quantum secure digital signature scheme. In this work we provide a comparison of the performance when instantiating SPHINCS with different cryptographic hash functions on both recent Intel and AMD platforms found in personal computers and the ARMv8-A platform which is prevalent in mobile phones. In particular, we provide a broad comparison of the performance of cryptographic hash functions utilizing the cryptographic extensions and vector instruction set extensions available on modern microprocessors. This comes with several new implementations optimized towards the specific use case of hash-based signature schemes. Further, we instantiate SPHINCS with these primitives and provide benchmarks for the costs of generating keys, signing messages and verifying signatures with SPHINCS on Intel Haswell, Intel Skylake, AMD Ryzen, ARM Cortex A57 and Cortex A72.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Stateless Hash-Based Signatures

We present several optimizations to SPHINCS, a stateless hash-based signature scheme proposed by Bernstein et al. in 2015: PORS, a more secure variant of the HORS few-time signature scheme used in SPHINCS; secret key caching, to speed-up signing and reduce signature size; batch signing, to amortize signature time and reduce signature size when signing multiple messages at once; mask-less constr...

متن کامل

Grafting Trees: A Fault Attack Against the SPHINCS Framework

Because they require no assumption besides the preimage or collision resistance of hash functions, hash-based signatures are a unique and very attractive class of post-quantum primitives. Among them, the schemes of the sphincs family are arguably the most practical stateless schemes, and can be implemented on embedded devices such as FPGAs or smart cards. This naturally raises the question of t...

متن کامل

Clarifying the subset-resilience problem

We investigate the subset-resilience problem, defined in 2002 by Reyzin and Reyzin to analyze their HORS signature scheme. We show that textbook HORS is insecure against adaptive attacks, and present a practical attack based on a greedy algorithm. We also describe weak messages for HORS, that map to smaller subsets than expected, and are thus easier to cover. This leads to an improved attack ag...

متن کامل

ARMed SPHINCS - Computing a 41 KB Signature in 16 KB of RAM

This paper shows that it is feasible to implement the stateless hash-based signature scheme SPHINCS-256 on an embedded microprocessor with memory even smaller than a signature and limited computing power. We demonstrate that it is possible to generate and verify the 41KB signature on an ARM Cortex M3 that only has 16KB of memory available. We provide benchmarks for our implementation which show...

متن کامل

SPHINCS-Simpira: Fast Stateless Hash-based Signatures with Post-quantum Security

We introduce SPHINCS-Simpira, which is a variant of the SPHINCS signature scheme with Simpira as a building block. SPHINCS was proposed by Bernstein et al. at EUROCRYPT 2015 as a hash-based signature scheme with post-quantum security. At ASIACRYPT 2016, Gueron and Mouha introduced the Simpira family of cryptographic permutations, which delivers high throughput on modern 64-bit processors by usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017